Potential Application of Nano-Hydroxyapatite in Tooth Decay Prevention

Gabriel Eisenhuth; ¹ Claudia M. Tellez Freitas; ²

¹Roseman University, College of Graduate Studies, ²Roseman University, College of Dental Medicine

Introduction

Tooth decay is a chronic disease present in children and around 26% of adults. In recent years, nano-hydroxyapatite has gained attention as a potential caries prevention treatment, as it makes up over 90% of our tooth enamel and can aid in tooth remineralization. This study will look at the clinical applications of nano-hydroxyapatite in dentistry. Specifically, this study will examine the ability of nano-hydroxyapatite to remineralize teeth, it's effectiveness as a preventative dental

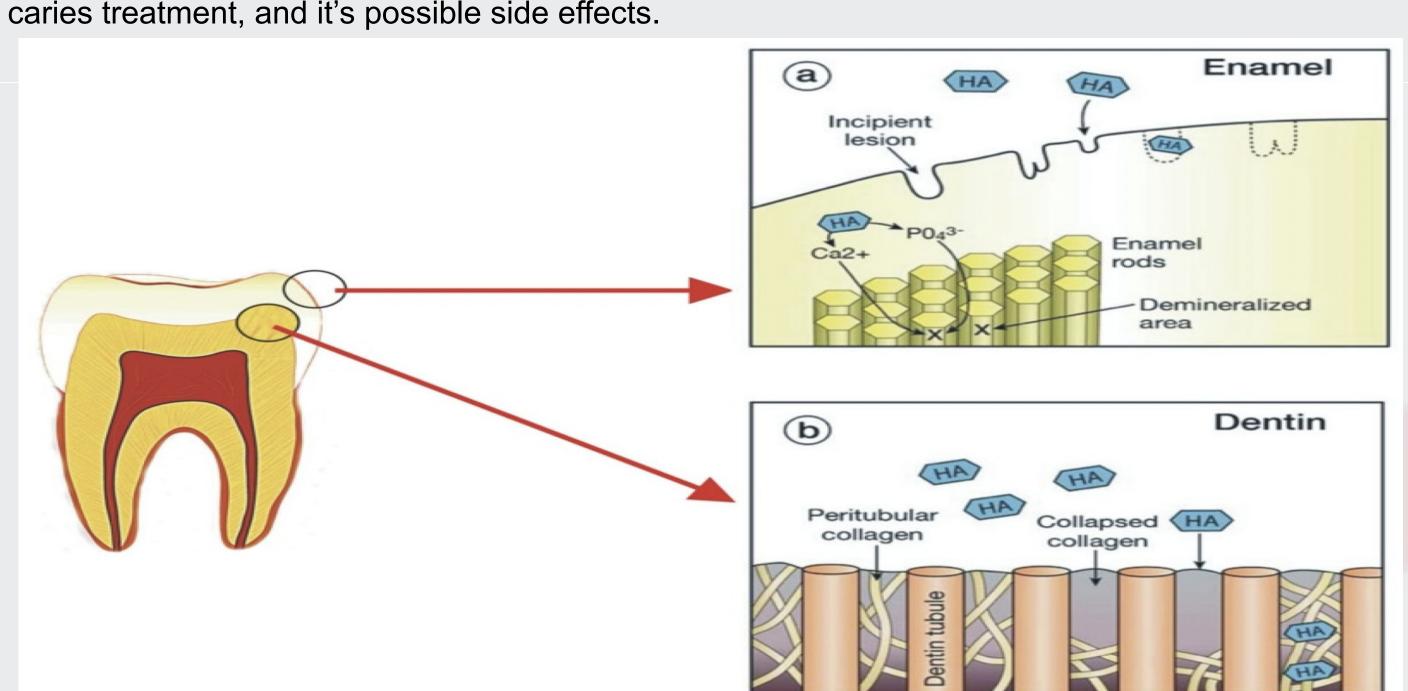


Figure 1. Displays nano-hydroxyapatite interacting with enamel & dentin. (Nano Medical Hydroxyapatite)

Methods

A range of databases was used such as Google Search, Google Scholars, and PubMed. The search strategy used was a combination of terms such as Nano-hydroxyapatite, Toothpaste, tooth remineralization, side effect of nano-hydroxyapatite, Tooth decay and treatment, and dental caries. This search strategy collected and analysed ten different scholarly articles.

	Inclusion	Exclusion			
Time Period	Literature published anytime after December 2022	Literature published before January 2014			
Language	English	Non-English			
Remineralization component	Nano-hydroxyapatite, Hydroxyapatite, Sodium Fluoride, Stannous Fluoride, Fluoride-Free, Sodium monofluorophosphate	N/A			
Article Type	Journal Articles, Peer-Reviewed Articles, Systematic Reviews	All other Articles			
Article Criteria	Nano-hydroxyapatite and tooth remineralization	Nano-hydroxyapatite and other diseases.			

Table 1. Inclusion/Exclusion criteria for nano-hydroxyapatite & increased remineralization for dental caries.

Results

Studies have shown that Nano-hydroxyapatite forms a protective layer over enamel. Nano-hydroxyapatite reduces biofilm adhesion on teeth. Studies showed nano-hydroxyapatite can homogeneously remineralize teeth. No possible side effects were observed in any of the research studies.

Study	Teeth (n=)	Effectiveness	Side Effects	Clinical Applications
(Nozari et al., 2017)	n = 80	Nano-hydroxyapatite was shown to have greater remineralization than NaF varnish	No side-effects were observed.	Gives a wide variety of preventative dentistry treatment options for individuals
(Haghgoo et al., 2014)	n = 60	Both nano-hydroxyapatite and NaF mouthwash greatly increased remineralization	No side effects were observed.	The use of NaF or nano-hydroxyapatite mouthwash can be used as effective remineralization option for tooth enamel.
(Grocholewicz et al., 2020)	n = 546	Nano-hydroxyapatite gel combined with ozone therapy provides remineralization to enamel and dentine.	No side effects were observed.	The combination of nano-hydroxyapatite gel with ozone therapy could be used as a nonrestorative treatment option for dental caries.
(Ebadifar et al., 2017)	n = 80	Nano-hydroxyapatite, fluoride, and the combination of both are effective at remineralizing carious lesions.	No side effects were observed.	The combination of using a 7% concentration of nano-hydroxyapatite with fluoride could be used as a potential treatment option for dental caries.
(Wang et al., 2016)	n = 137	Nano-hydroxyapatite was as effective as Pro-Argin and fluoride varnish at reducing dental hypersensitivity.	No side effects were observed.	Nano-hydroxyapatite can be used as an effective treatment option for individuals experiencing dental hypersensitivity.

Table 2. Analysing the effectiveness, side effects, and clinical applications of nano-hydroxyapatite.

Studies main findings:

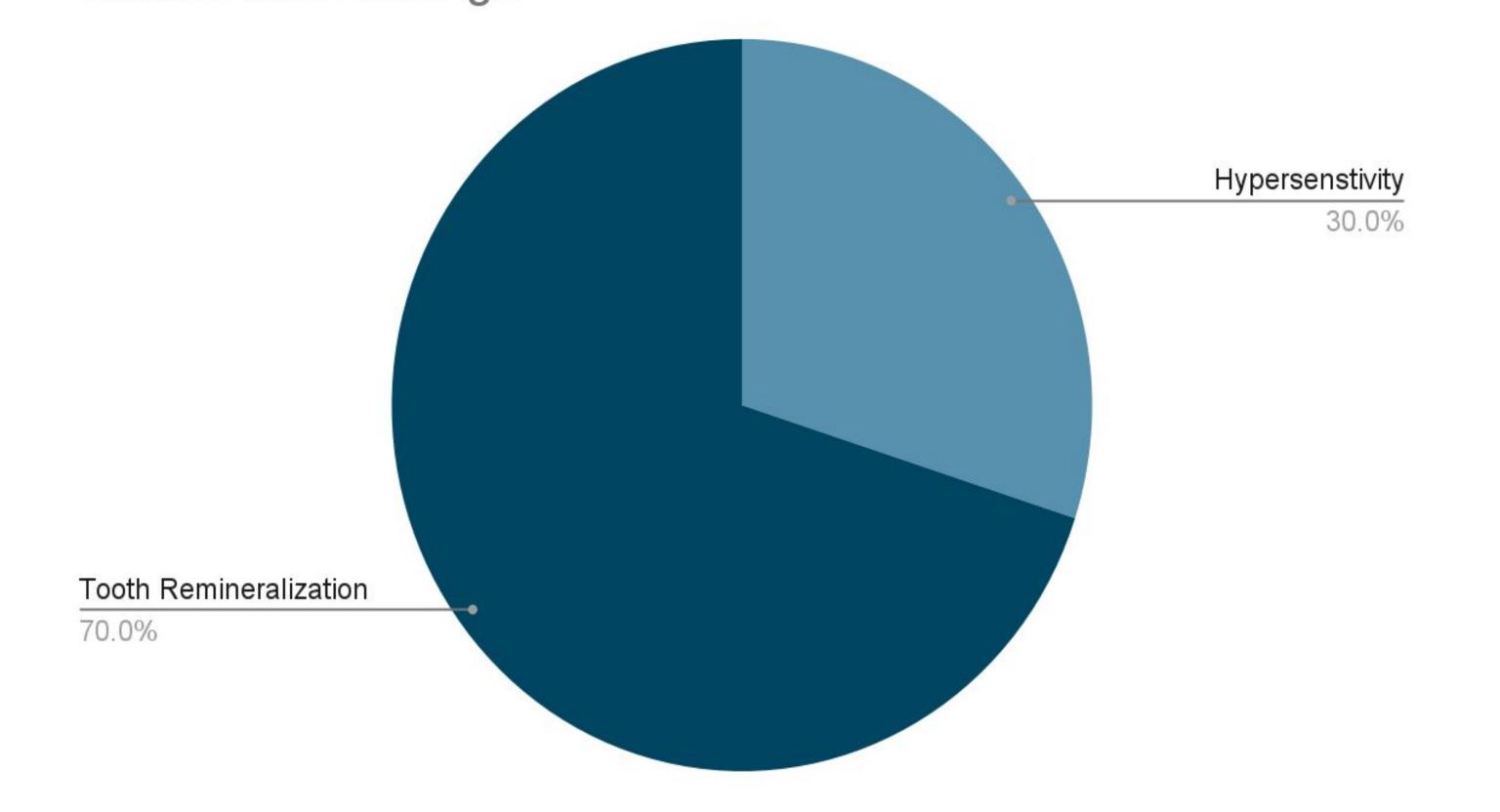
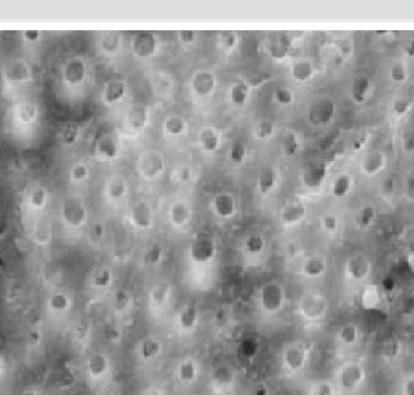


Figure 2. Displays the potential clinical applications and main findings for nano-hydroxyapatite of the studies analysed.


Control

Future directions should include in vitro & in vivo studies using the combination of

changes and permeability alteration following the nano-hydroxyapatite application.

nano-hydroxyapatite & sodium fluoride for the remineralization of teeth. Additionally, future

studies should focus on the mechanism of action that are necessary for dentin morphological

Pro-Argin

Future Directions

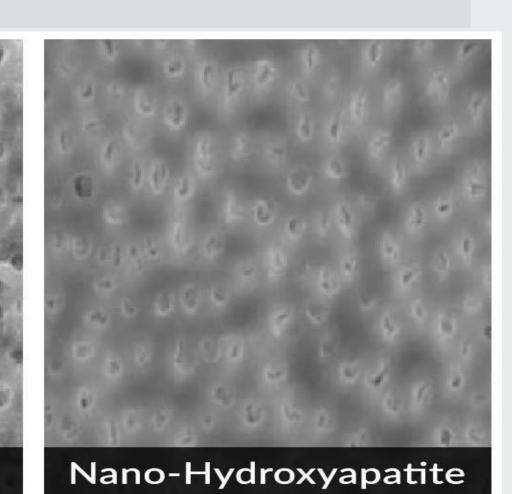


Figure 3. Displays the remineralization potential using Pro-Argin and Nano-Hydroxyapatite in dentin tubules. (Felgueiras, 2018)

Conclusion

At the root, nano-hydroxyapatite is effective at remineralizing tooth enamel & providing relief for hypersensitivity. Based on the current literature, nano-hydroxyapatite can provide individuals with an alternative remineralization option compared to fluoride. Additionally, the current literature determined hydroxyapatite nanoparticles to be non-toxic and biocompatible.

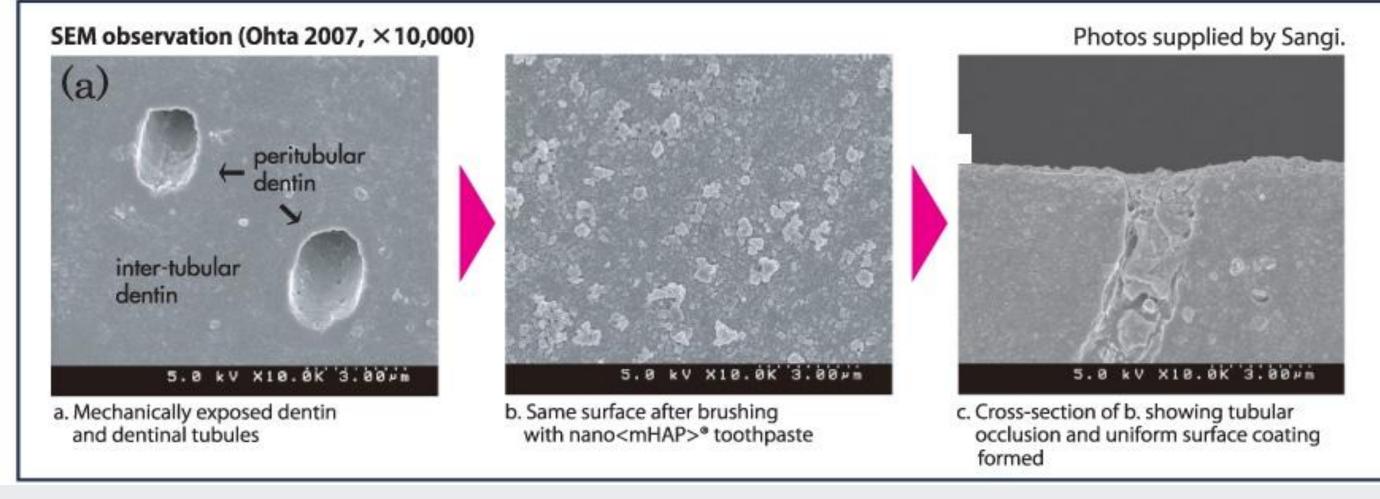


Figure 4. Displays dentin tubules remineralizing from nano-hydroxyapatite. (Nano Medical Hydroxyapatite)

References

B Low, S., Allen, E. P., & Kontogiorgos, E. D. (2015, February 27). Reduction in dental hypersensitivity with nano-hydroxyapatite, potassium nitrate, sodium monoflurophosphate and antioxidants. The open dentistry journal. Retrieved February 16, 2023, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4378071/

Felgueiras, R. (2018). Erosion and sensitivity. Acclaim Toothpaste. Retrieved February 16, 2023, from https://www.aclaim.co.in/erosion-and-sensitivity/ Ebadifar, A., Nomani, M., & Fatemi, S. A. (2017). Effect of nano-hydroxyapatite toothpaste on microhardness ofartificial carious lesions created on extracted teeth. Journal of dental research, dental prospects. Retrieved February 16, 2023, from

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5390120/ Epple, M., Rethman, M. P., Kensche, A., Ribeiro, L. G., Schäfer, F., Tschoppe, P., Dipalma, G., Pedersen, A. M. L., Head, D., Lima-Holanda, A. T., Lee, Y., Amaechi, B. T., Heng, C., Sudradjat, H., Featherstone, J. D., Meyer, F., Kani, T., Schlagenhauf, U., Roveri, N., ... Sreebny, L M. (2021, October 28). Anti-caries evaluation of a nano-hydroxyapatite dental lotion for use after toothbrushing: An in situ study. Journal of Dentistry. Retrieved February 16, 2023, from https://www.sciencedirect.com/science/article/abs/pii/S0300571221002864?via%3Dihub

Grocholewicz, K., Matkowska-Cichocka, G., Matkowska-Ci trial. Scientific reports. Retrieved February 16, 2023, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7341873/

Haghgoo, R., Rezvani, M. B., & Salehi Zeinabadi, M. (2014, July). Comparison of nano-hydroxyapatite and sodium fluoride mouthrinse for remineralization of incipient carious lesions. Journal of dentistry (Tehran, Iran). Retrieved February 16, 2023, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4283741/

Ionescu, A. C., Cazzaniga, G., Ottobelli, M., Garcia-Godoy, F., & Brambilla, E. (2020, June 1). Substituted nano-hydroxyapatite toothpastes reduce biofilm formation on enamel and resin-based composite surfaces. Journal of functional biomaterials. Retrieved February 16, 2023, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7353493/ Juntavee, A., Juntavee, N., & Sinagpulo, A. N. (2021, November 8). Nano-hydroxyapatite gel and its effects on remineralization of artificial carious lesions. International Journal of Dentistry. Retrieved February 16, 2023, from https://www.hindawi.com/journals/ijd/2021/7256056/ Mielczarek, A. (2014). The effect of nano-hydroxyapatite toothpaste on enamel surface remineralization. An in vitro study. American Journal of Dentistry. Retrieved February 16, 2023, from e-remineralization-An-in-vitro-study.pdf Nano Medical Hydroxyapatite. Oral Science | Nano Medical Hydroxyapatite. (n.d.). Retrieved February 16, 2023, from https://www.oralscience.com/en/ingredients/mhap Nozari, A., Ajami, S., Rafiei, A., & Niazi, E. (2017, September). Impact of nano hydroxyapatite, nano silver fluoride and sodium fluoride varnish on primary teeth enamel remineralization: An in vitro study. Journal of clinical and diagnostic research: JCDR. Retrieved February 16, 2023, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5713866/ Wang, L., Magalhães, A. C., Francisconi-dos-Rios, L. F., Calabria, M. P., Araújo, D. F. G., Buzalaf, M. A. R., Lauris, J. R. P., & Pereira, J. C. (2016, July 1). Treatment of dentin hypersensitivity using nano-hydroxyapatite pastes: A randomized three-month clinical trial. Allen Press. Retrieved

February 16, 2023, from https://meridian.allenpress.com/operative-dentistry/article/41/4/E93/107446/Treatment-of-Dentin-Hypersensitivity-Using-Nano

ROSEMAN UNIVERSITY